Wakamatsu tilting modules
نویسندگان
چکیده
منابع مشابه
Wakamatsu Tilting Modules , U - Dominant Dimension and k - Gorenstein Modules ∗ †
Let Λ and Γ be left and right noetherian rings and ΛU a Wakamatsu tilting module with Γ = End(ΛT ). We introduce a new definition of U -dominant dimensions and show that the U -dominant dimensions of ΛU and UΓ are identical. We characterize k-Gorenstein modules in terms of homological dimensions and the property of double homological functors preserving monomorphisms. We also study a generaliza...
متن کامل9 S ep 2 00 4 Wakamatsu Tilting Modules , U - Dominant Dimension and k - Gorenstein Modules ∗ †
Let Λ and Γ be left and right noetherian rings and ΛU a Wakamatsu tilting module with Γ = End(ΛT ). We introduce a new definition of U -dominant dimensions and show that the U -dominant dimensions of ΛU and UΓ are identical. We characterize k-Gorenstein modules in terms of homological dimensions and the property of double homological functors preserving monomorphisms. We also study a generaliza...
متن کامل. R A ] 1 8 Se p 20 06 Wakamatsu Tilting Modules , U - Dominant Dimension and k - Gorenstein Modules ∗ †
Let Λ and Γ be left and right noetherian rings and ΛU a Wakamatsu tilting module with Γ = End(ΛT ). We introduce a new definition of U -dominant dimensions and show that the U -dominant dimensions of ΛU and UΓ are identical. We characterize k-Gorenstein modules in terms of homological dimensions and the property of double homological functors preserving monomorphisms. We also study a generaliza...
متن کاملRigidity of Tilting Modules
Let Uq denote the quantum group associated with a finite dimensional semisimple Lie algebra. Assume that q is a complex root of unity of odd order and that Uq is obtained via Lusztig’s q-divided powers construction. We prove that all regular projective (tilting) modules for Uq are rigid, i.e., have identical radical and socle filtrations. Moreover, we obtain the same for a large class of Weyl m...
متن کاملConstructing Tilting Modules
We investigate the structure of (infinite dimensional) tilting modules over hereditary artin algebras. For connected algebras of infinite representation type with Grothendieck group of rank n, we prove that for each 0 ≤ i < n− 1, there is an infinite dimensional tilting module Ti with exactly i pairwise non-isomorphic indecomposable finite dimensional direct summands. We also show that any ston...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2004
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2004.03.023